Abstract

A novel and sensitive derivatization procedure for the determination of 2-cynaoacetamide in pharmaceutical samples using liquid chromatography with the fluorescence detection was discovered. The method is based on derivatization of 2-cynaoacetamide using 2-hydroxyacetophenone as a new derivatization reagent. The product of derivatization reaction was isolated and characterized using spectroscopic techniques namely LC–MS, NMR and IR. The structure of 2-cyanoacetamide derivative was unambiguously assigned as a 2-amino-4-phenylfuran-3-carboxamide.Two derivatization systems were optimized in terms of reaction temperature, reaction time, pH and concentration of 2-hydroxyacetophenone, and a new pre- and post-derivatization HPLC methods were developed. The separations on HPLC with pre-column derivatization were accomplished using stationary phase based on a XBridge C18 column (100×4.6, 3.5μm) and isocratic elution using the mobile phase acetonitrile – 0.1% formic acid (30:70, v/v). The separations on the HPLC with post-column derivatization were performed on stationary phase on a TSKgel Amide-80 column (150×4.6mm, 3μm). The mobile phase was a mixture of acetonitrile, methanol and 10mM sodium formate buffer at pH=4.5 in ratio 3:2:95 (v/v).Both HPLC methods were fully validated in terms of linearity, sensitivity (limit of detection and limit of quantification), accuracy and precision according to ICH guidelines. The pre-column derivatization method was linear in the range 1.1–2000μg/l with method accuracy≥98.2% and method precision RSD≤4.8%. The post-column derivatization method was linear in the range 12–2000μg/l. Method accuracy≥96.3% and method precision RSD≤3.5%. Proposed new methods were proved to be highly sensitive, simple and rapid, and were successfully applied to the determinations of 2-cynaoacetamide in pregabalin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.