Abstract

The problems of privacy and security is becoming a major challenge when it comes to the distributed systems, federated machine learning system especially when data are been transmitted or learned on a network , this necessitated the reasons for this research work which is all about wireless federated machine learning process using a Raspberry Pi. The Raspberry Pi 4 is a single hardware board with built in Linux operating system. We used data set of names from nine (9) different languages and then develop a training model using recurrent neural network to train this names compare to the names in the existing language like French, Scottish to predict if the names are from any of this language, this is done wirelessly with the Wi-Fi network in a federated machine learning environment for experimental setup with PySft’s that is installed in the python environment. The system was able to predict that name from which the language it originate from, the methodology that is implore in the research work is the Rapid Application Development (RAD). The benefits of this system are to ensure privacy, reduces the computing power, ensure real time learning and most importantly it is cost effective.

Highlights

  • Applied learning strategies include integrating training data into a specified database or database

  • The problems of privacy and security is becoming a major challenge when it comes to the distributed systems, federated machine learning system especially when data are been transmitted or learned on a network, this necessitated the reasons for this research work which is all about wireless federated machine learning process using a Raspberry Pi

  • We used data set of names from nine (9) different languages and develop a training model using recurrent neural network to train this names compare to the names in the existing language like French, Scottish to predict if the names are from any of this language, this is done wirelessly with the Wi-Fi network in a federated machine learning environment for experimental setup with PySft’s that is installed in the python environment

Read more

Summary

Introduction

Applied learning strategies include integrating training data into a specified database or database. We used data set of names from nine (9) different languages and develop a training model using recurrent neural network to train this names compare to the names in the existing language like French, Scottish to predict if the names are from any of this language, this is done wirelessly with the Wi-Fi network in a federated machine learning environment for experimental setup with PySft’s that is installed in the python environment.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.