Abstract

This study proposes a methodology that integrates the epsilon constraint method (EC) and artificial neural network (ANN) to determine shelter location-allocation. Since shelter location-allocation is a critical part of disaster response stage, fast decision-making is very important. A multi-objective optimization model is formulated to simultaneously minimize total cost and minimize total evacuation time. The proposed model is solved by EC because it generates the optimal solutions without intervention of decision-makers during the solution process. However, EC requires intensive computational time, especially when dealing with large-scale data. Thus, ANN is combined with EC to facilitate prompt decision-making and address the complexity. Herein, ANN is supervised by the optimal solutions generated by EC. The applicability of the proposed methodology is demonstrated through a case study of shelter allocation in response to flooding in Surat Thani, Thailand. It is plausible to use this proposed methodology to improve disaster response for the benefit of victims and decision-makers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call