Abstract
With the publicized benefits offered by renewable energy resources, more and more households embrace the utilization of stand-alone installations ranging from small to medium scale systems. In literature, several studies provide insights on the effects of integration of renewable energy (RE) resources to the distribution systems but have inadequacy of considering the penetration levels. Moreover, RE cost reductions, increasing costs of traditional energy sources, and Renewable Portfolio Standards have created the possibility of significant increase of penetration levels of distributed RE generation being installed on distribution systems. To aid in the evaluation and assist with these expansions, new analysis tools are needed. In particular, new RE high-penetration analysis tools and procedures need to be developed and integrated with existing conventional methods. This paper presents a simulation based study on distribution system with and without integration of RE sources. It takes into account of the impending effects of these RE integrations in the distribution system. This paper emphasizes a novel method of determining the penetration level of Distributed Generation using least square minimization (LSM) method. The studies were tested using IEEE 123 bus distribution test feeder and actual data from an existing distribution system to verify the effectiveness and robustness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.