Abstract
Online media for news consumption has doubtful advantages. From one perspective, it has minimal expense, simple access, and fast dispersal of data which leads individuals to search out and devour news from online media. On the other hand, it increases the wide spread of "counterfeit news", i.e., inferior quality news with purposefully bogus data. The broad spread of fake news contrarily affects people and society. Hence, fake news detection in social media has become an emerging research topic that is drawing attention from various researchers. In past, many creators proposed the utilization of text mining procedures and AI strategies to examine textual data and helps to foresee the believability of news. With more computational capacities and to deal with enormous datasets, deep learning models present a better presentation over customary text mining strategies and AI methods. Normally deep learning model, for example, LSTM model can identify complex patterns in the data. Long short term memory is a tree organized recurrent neural network (RNN) used to examine variable length sequential information. In our proposed framework we set up a fake news identification model dependent on LSTM neural network. Openly accessible unstructured news datasets are utilized to evaluate the exhibition of the model. The outcome shows the prevalence and exactness of LSTM model over the customary techniques specifically CNN for fake news recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Trends in Computer Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.