Abstract

Abstract Recent advances in the study of dynamics of elastic multibody systems, specially the flexible manipulators, indicate the need and importance of decoupling the equations of motion. In this paper, an improved method for deriving elastic generalized coordinates is presented. In this regard, the Kane’s equations of motion for elastic multibody systems are considered. These equations are in the generalized form and may be applied to any desired holonomic system. Flexibility in choosing generalized speeds in terms of generalized coordinate derivatives in Kane’s method is used. It is shown that proper choice of a congruency transformation between generalized coordinate derivatives and generalized speeds leads to a series of first order decoupled equations of motion for holonomic elastic multibody systems. Furthermore, numerical implementation of the decoupling technique using congruency transformation is discussed and presented via simulation of a two degree of freedom flexible manipulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.