Abstract
This paper proposes a novel algorithm AMMFI based on self-adjusting and orderly compound policy to solve the problems of existing algorithms for mining maximal frequent itemsets in a data stream. The proposed algorithm processes the data stream based on sliding window technique and scans data stream fragments single-pass to obtain and store frequent itemsets in frequent itemsets list. It then constructs a self-adjusting and orderly FP-tree, dynamically adjusts the tree structure with the insertion of itemsets, uses mixed subset pruning method to reduce the search space, and merges nodes with the same min_sup in identical branch. Finally, orderly compound FP-tree is generated and it avoids superset checking in the process of mining maximal frequent itemsets. Detailed simulation analysis demonstrates that the presented algorithm is of high efficiency of space and time and is more stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wireless and Mobile Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.