Abstract

Implementing condition monitoring functionality in production machinery often proves to be a difficult task. Device- and process-specific algorithms must be created while inhomogeneous industrial communication networks hinder the aggregation of control signals and process variables. Further challenges arise from the advance of flexible cyber-physical systems (CPS) and the industrial internet of things (IIoT). They demand a service-oriented condition monitoring architecture, which seamlessly adapts to quickly changing production topologies. In this context, data-driven systems which are capable of unsupervised learning are promising approaches. The aim is the autonomous identification of significant process variables and patterns. This paper describes a machine learning approach for a condition and process monitoring system on the basis of pattern recognition within structure-borne noise of rotating cutting machinery. Process states are defined under application of non-negative matrix factorization (NMF). A production model is learned and deployed on the basis of Gaussian mixture models (GMM) and hidden Markov models (HMM) in a two stage process. Additionally a generic framework to ease the implementation of decentralized condition monitoring functionalities is given. A decentralized component, the monitoring module, constitutes a part of a holistic condition monitoring architecture managed by a central server. The approach is evaluated on the example of mill-turn centers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.