Abstract

Code smells detection helps in improving understandability and maintainability of software while reducing the chances of system failure. In this study, six machine learning algorithms have been applied to predict code smells. For this purpose, four code smell datasets (God-class, Data-class, Feature-envy, and Long-method) are considered which are generated from 74 open-source systems. To evaluate the performance of machine learning algorithms on these code smell datasets, 10-fold cross validation technique is applied that predicts the model by partitioning the original dataset into a training set to train the model and test set to evaluate it. Two feature selection techniques are applied to enhance our prediction accuracy. The Chi-squared and Wrapper-based feature selection techniques are used to improve the accuracy of total six machine learning methods by choosing the top metrics in each dataset. Results obtained by applying these two feature selection techniques are compared. To improve the accuracy of these algorithms, grid search-based parameter optimization technique is applied. In this study, 100% accuracy was obtained for the Long-method dataset by using the Logistic Regression algorithm with all features while the worst performance 95.20 % was obtained by Naive Bayes algorithm for the Long-method dataset using the chi-square feature selection technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.