Abstract

The determination of thermal quantities from mechanical properties is still a challenge in the thermodynamic field.In this work, the authors suggest a preliminary numerical calculation which allows to determine the constant pressure specific heat capacity, starting from density and speed-of-sound experimental values, as input data.This method is a variant of the well characterized Recursive Equation Method (REM) [1] and permits to develop empirical equations of state for single phase fluids. In particular, the isobaric specific heat capacity has been obtained, in a wide range of temperatures and pressures, for pure water, n-nonane, n-undecane, and rapeseed oil methyl ester. The results have been compared with those available in the literature, when it was possible. Moreover, the typical uncertainty of heat capacity has been estimated to be in the order of 1.5%; however it has been shown that it can be improved when proper distributions of the experimental points are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.