Abstract

Beamforming is a signal processing technique where an array of antenna elements can be steered to transmit and receive radio signals in a specific direction. The usage of millimeter wave (mmWave) frequencies and multiple input multiple output (MIMO) beamforming are considered as the key innovations of 5 th Generation (5G) and beyond communication systems. The mmWave radio waves enable high capacity and directive communication, but suffer from many challenges such as rapid channel variation, blockage effects, atmospheric attenuations, etc. The technique initially performs beam alignment procedure, followed by data transfer in the aligned directions between the transmitter and the receiver [1]. Traditionally, beam alignment involves periodical and exhaustive beam sweeping at both transmitter and the receiver, which is a slow process causing extra communication overhead with MIMO and massive MIMO radio units. In applications such as beam tracking, angular velocity, beam steering etc. [2], beam alignment procedure is optimized by estimating the beam directions using first order polynomial approximations. Recent learning-based SOTA strategies [3] for fast mmWave beam alignment also require exploration over exhaustive beam pairs during the training procedure, causing overhead to learning strategies for higher antenna configurations. Therefore, our goal is to optimize the beam alignment cost functions e.g. , data rate, to reduce the beam sweeping overhead by applying polynomial approximations of its partial derivatives which can then be solved as a system of polynomial equations. Specifically, we aim to reduce the beam search space by estimating approximate beam directions using the polynomial solvers. Here, we assume both transmitter (TX) and receiver (RX) to be equipped with uniform linear array (ULA) configuration, each having only one degree of freedom (d.o.f.) with N t and N r antennas, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call