Abstract
The incorporation of intramolecular hydrogen bonds (IMHB) into small molecules constitutes an interesting optimization strategy to afford potential drug candidates with enhanced solubility as well as permeability and consequently improved bioavailability (if metabolic stability is high). Common methods to assess IMHB rely on spectroscopic or diffraction techniques, which, however, have limited throughput when screening for hit compounds in early phases of drug discovery. Inspired by literature findings using supercritical fluid chromatography (SFC) as an indirect method for IMHB identification in a screening context, we aimed at developing a secondary chromatographic methodology taking advantage of commonly used HPLC-MS instrumentation. In this work, we explored hydrophilic interaction liquid chromatography (HILIC) and developed a method for discriminating compounds based on their hydrogen bonding features. By quantifying retention of different matched molecular pairs (MMP) and using information about their low energy conformations from quantum-mechanical calculations, we defined a hydrogen bonding-driven adsorption (kads) chromatographic parameter to assess a compound’s propensity to forming IMHB. In addition to the MMP analysis, we found that the kads parameter allows for the differentiation of analytes forming IMHB regardless of the comparison with control compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.