Abstract
AbstractThe treatment of mice with anti-CD4 and anti-CD8 monoclonal antibodies (mAbs) on day −5, plus 3 Gy whole body irradiation (WBI) and 7 Gy thymic irradiation (TI) on day 0, allows fully major-histocompatibility-complex–mismatched allogeneic bone marrow engraftment and the induction of immunologic tolerance. TI is required in this model to overcome alloreactivity and possibly to make “space” in the recipient thymus so that lasting central tolerance can be achieved. In addition to suppressing mature T cells in the periphery, Cyclosporine A (CYA) and glucocorticoids have a powerful influence on the thymus. In this study, we evaluated whether the administration of CYA to recipient mice for 12 days prior to bone marrow transplant (BMT), of glucocorticosteroids on the day of BMT, or a combination of both, could create space and overcome alloresistance in the thymus by specifically depleting immature and mature thymocytes prior to BMT. High levels of multilineage donor hematopoietic repopulation and specific transplantation tolerance were achieved in mice treated from days −15 to −3 with CYA (20 mg/kg/d subcutaneously), anti-CD4/CD8 mAbs on day −5, followed by 3 Gy WBI and 15 × 106 allogeneic bone marrow cells on day 0. Vβ analysis suggested a central deletional tolerance mechanism. The same treatment without CYA pretreatment allowed only transient chimerism, without tolerance. Corticosteroid treatment abolished the engraftment-promoting and tolerance-inducing effects of CYA. These results demonstrate a novel pretransplantation-only application of CYA, which facilitates allogeneic marrow engraftment with minimal conditioning, by creating thymic space and/or overcoming intrathymic alloresistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.