Abstract

Predictive numerical models in the study of ground-borne vibrations generated by railway systems have traditionally relied on the subsystem partition approach (segmented). In such a method, loads are individually applied, and the cumulative effect of the rolling stock is obtained through superposition. While this method serves to mitigate computational costs, it may not fully capture the complex interactions involved in ground-borne vibrations—especially in the frequency domain. Recent advancements in computation and software have enabled the development of more sophisticated vibrational contamination prediction models that encompass the entire dynamics of the system, from the rolling stock to the terrain, allowing continuous simulations with a defined time step. Furthermore, the incorporation of computational contact mechanics tools between various elements not only ensures accuracy in the time domain but also extends the analysis into the frequency domain. In this novel approach, the segmented models are shifted to continuous simulations where the nonlinear problem of a rigid–flexible multibody system is fully considered. The model can predict the impact of a high-speed rail (HSR) vehicle passing, capturing the key intricacies of ground-borne vibrations and their impact on the surrounding environment due to a deeper comprehension of the occurrences in the frequency domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.