Abstract

With increasing microbial drug resistance worldwide, antimicrobial peptides (AMPs) are considered promising alternatives to addressing this problem. In this study, a series of synthetic peptides were designed based on the membrane-disrupting properties of the membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) envelope protein. The peptide AP16-A was found to exhibit the most effective antimicrobial activities against both Gram-negative and Gram-positive bacteria. The minimal bactericidal concentration (MBC) of AP16-A ranged from 2μg/ml to 16μg/ml. AP16-A had no detectable cytotoxicity in various tissue cultures and a mouse model. Furthermore, results of confocal fluorescence microscopy and the SYTOX Green uptake assay indicated that AP16-A killed Gram-negative bacteria by the combined effects of relatively slow membrane permeabilization and interaction with an intracellular target, while it killed Gram-positive bacteria by a fast membrane permeabilization process, which achieved relatively more rapid bacterial killing kinetics. The results of this study support the potential use of AP16-A as an AMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.