Abstract
Antifungal hydrogels with added antifungal drugs have received extensive attention from researchers due to their potential use in various applications, such as wound dressings and ultrasound gel pads. In this study, we proposed and designed an alternative antifungal hydrogel preparation strategy to obtain hydrogels with high antifungal abilities. We employed plasma-activated water (PAW) instead of water in the hydrogel polymerization process to prepare plasma-activated hydrogels (PAHs). Disc diffusion assay results revealed that PAH exhibits satisfactory antifungal activity. Interestingly, the oxidation-reduction potential (ORP) of the PAH was significantly lower than that of conventional polyacrylamide (PAAm) hydrogels, and we provided a possible reaction equation to explain the lower value of ORP in the PAH. Furthermore, using electron spin resonance (ESR) spectroscopy, the hydroxyl radical was detected in PAHs. Although the active ingredients in the hydrogel cannot be quantitatively measured, the hydroxyl radical and NO3- are speculated to be the main components of PAH with antifungal activity according to ESR spectroscopy and optical emission spectroscopy. Further experiments also showed that PAH has a longer antifungal lifetime than PAW. In summary, the proposed plasma-activated hydrogels can provide valuable preparation strategies for delivering antifungal capabilities and have many potential applications in biomedical fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.