Abstract

Affinity membrane is widely employed to promote specific adsorption of toxins and reduce the blood purification therapeutic time. However, it suffers from insufficient toxin binding and low hemocompatibility. Herein, a novel anticoagulant affinity membrane (AAM) was developed to clear bilirubin from human blood in a pore-flow-through way. Firstly, a nylon net membrane with a regularly arranged pore as the matrix was coated with poly(pyrrole-3-carboxylic acid) via chemical vapor deposition (CVD) method. Then, poly(L-arginine) (PLA) as a highly specific ligand of bilirubin, was immobilized onto the surface of the composited membrane after the modification of heparin. Owing to the 3-dimensional molecular architecture of PLA, up to 86.1 % of bilirubin was efficiently cleared. Besides, the AAM exhibited effective anticoagulant activity in the measurement of clotting time, with suppressed thrombus formation, low hemolysis ratio, minimized platelet and leukocyte adhesion, and excellent biosafety. Therefore, the AAM has enormous potential in blood purification therapy for enhancing hemocompatibility and bilirubin removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call