Abstract

The aim of the present investigation was to determine the active ingredients in Amaranthus tricolor L. leaves and develop a biological pesticide. Organic solvent extraction, column chromatography, liquid chromatography, ODS-C18 reverse elution, Sephadex LH-20 gel filtration, H spectrum, and C spectrum were used to isolate the pure product for an assessment of the agricultural activity and bacteriostatic mechanisms. The results showed that the activity of the crude extract following carbon powder filtration was 1.63-fold that of the non-filtered extract. Further isolation was performed to obtain two pure products, namely, hydroxybenzoic acid (HBA) and benzo[b]furan-2-carboxaldehyde (BFC), and their molecular formulas and molecular weights were C7H6O3 and 138.12, and C9H6O2 and 146.12, respectively. Our study is the first to determine that HBA has bacteriostatic activity (MIC 125 μg/mL) and is also the first to isolate BFC from A. tricolor. The ultrastructure observation results showed that HBA caused the bacteria to become shriveled, distorted, and deformed, as well as exhibit uneven surfaces. After HBA treatment, 70 differentially expressed metabolites were detected in the bacteria, of which 9 were downregulated and 61 were upregulated. The differentially expressed metabolites were mainly strigolactones, organic acids and derivatives, fatty acids, benzene and substituted benzene derivatives, amino acids and associated metabolites, and alcohols and amines. Among all of the downregulated differentially expressed metabolites, MEDP1280 was the most critical, as it participates in many physiological and biochemical processes. The enrichment analysis showed that the differentially expressed metabolites mainly participate in tyrosine metabolism, biosynthesis of amino acids, cysteine and methionine metabolism, and arginine and proline metabolism. Additionally, HBA was found to disrupt cell membrane permeability and integrity, causing the leakage of substances and apoptosis. The physiological and biochemical test results showed that HBA could increase the pyruvate levels in bacteria but could decrease the activities of respiratory enzymes (malate dehydrogenase (MDH) and NADH oxidase) and antioxidant enzymes (superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX)). Inverse molecular docking was used to study the binding between HBA and respiratory and antioxidant enzymes. The results showed that HBA could bind to MDH, NADH oxidase, SOD, and GSH-PX, suggesting that these enzymes may be the effector targets of HBA. Conclusion: The optimal active ingredient in A. tricolor that can inhibit Acidovorax avenae subsp. citrulli was identified as HBA. HBA mainly disrupts the cell membrane, damages the metabolic system, and inhibits respiration and antioxidant enzyme activity to control bacterial growth. These results provide a reference for the further development of biological pesticides.

Highlights

  • Amaranthus tricolor L. is a dicotyledonous herb that is widely cultivated in tropical and temperate regions [1]

  • In-depth analysis of the metabolite changes in metabolic pathways that were greatly affected by hydroxybenzoic acid (HBA) showed that 2,5-dihydroxy benzoic acid (MEDN0089), phenol (MEDL01916), and 2-(4-Hydroxyphenyl) ethanol (MEDN0554) in tyrosine metabolism were upregulated, which may be related to drug resistance

  • The results of this study showed that significant changes occurred in many amino acids, of which the downregulation of S-adenosyl-Lmethionine (MEDP1280) was the most critical, as it affected the biosynthesis of amino acids, monobactam biosynthesis, arginine and proline metabolism, and the sulfur relay system

Read more

Summary

Introduction

Amaranthus tricolor L. is a dicotyledonous herb that is widely cultivated in tropical and temperate regions [1]. It exhibits strong stress resistance, including drought and barren land resistance, grows requires little time investment for agricultural production, and has a high survival rate [2,3]. It has high nutritional value, being rich in vitamins and minerals, and is mainly consumed as a leafy vegetable [4,5].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call