Abstract
Hodgkin's lymphoma and anaplastic large cell lymphoma, especially relapsed or refractory diseases, could recently be cured by CD30-targeted immunotherapy. However, the CD30 antigen releases the soluble ectodomain of CD30, which might obscure the targeted therapy. Therefore, the membrane epitope of CD30 (mCD30), left on the cancer cells, might be a prospective target for lymphoma treatment. The discovery of novel mCD30 monoclonal antibodies (mAbs) using phage technology yielded 59 potential human single-chain variable fragments (HuscFvs). Ten candidate HuscFv clones have been selected based on various methods, i.e., direct PCR, ELISA and western blot assays, and nucleotide sequencing techniques. Fortunately, only one potential HuscFv clone, clone #A4, was determined by the prediction of HuscFv-peptide molecular docking and the binding affinity test using isothermal titration calorimetry. Finally, we proved that the HuscFv #A4, which had a binding affinity (Kd) of 421e-9 ± 2.76e-6 M, might be the novel mCD30 mAb. We generated chimeric antigen receptor-modified T lymphocytes using HuscFv #A4 as an antigen detection part (anti-mCD30-H4CART). The cytotoxicity assay of anti-mCD30-H4CART cells showed significant eradication of the CD30-expressing cell line, K562 (p = 0.0378). We found a novel mCD30 HuscFv using human phage technology. We systematically examined and proved that our HuscFv #A4 could specifically eradicate CD30-expressing cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: PLOS ONE
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.