Abstract

Increasing evidence suggests that antibody-drug conjugates (ADCs) can enhance anti-tumor immunity and improve clinical outcome. Here, we elucidate the therapeutic efficacy and immune-mediated mechanisms of a novel HER2-targeting ADC bearing a potent anthracycline derivate as payload (T-PNU) in a human HER2-expressing syngeneic breast cancer model resistant to trastuzumab and ado-trastuzumab emtansine. Mechanistically, the anthracycline component of the novel ADC induced immunogenic cell death leading to exposure and secretion of danger-associated molecular signals. RNA sequencing derived immunogenomic signatures and TCRβ clonotype analysis of tumor-infiltrating lymphocytes revealed a prominent role of the adaptive immune system in the regulation of T-PNU mediated anti-cancer activity. Depletion of CD8 T cells severely reduced T-PNU efficacy, thus confirming the role of cytotoxic T cells as drivers of the T-PNU mediated anti-tumor immune response. Furthermore, T-PNU therapy promoted immunological memory formation in tumor-bearing animals protecting those from tumor rechallenge. Finally, the combination of T-PNU and checkpoint inhibition, such as α-PD1, significantly enhanced tumor eradication following the treatment. In summary, a novel PNU-armed, HER2-targeting ADC elicited long-lasting immune protection in a murine orthotopic breast cancer model resistant to other HER2-directed therapies. Our findings delineate the therapeutic potential of this novel ADC payload and support its clinical development for breast cancer patients and potentially other HER2 expressing malignancies.

Highlights

  • Epidermal growth factor receptor 2 (HER2) is amplified and overexpressed in about 20% of all breast cancer patients [1, 2]

  • While EMT6-human HER2 (hHER2) cells showed sensitivity towards T-PNU treatment, they were unresponsive to T-DM1

  • Despite the very promising therapeutic efficacy of antibody-drug conjugates (ADCs) armed with microtubule-destabilizing warheads, resistance, either intrinsic or acquired, remains a clinical challenge in the management of patients

Read more

Summary

Introduction

Epidermal growth factor receptor 2 (HER2) is amplified and overexpressed in about 20% of all breast cancer patients [1, 2]. D’Amico et al Journal for ImmunoTherapy of Cancer (2019) 7:16 develop various and complex resistance mechanisms [7]. This urges expansion of the therapeutic arsenal by development of drugs that are more potent and/or target novel pathways. In the ADC field, efforts are currently under way to develop site-specific conjugation technologies, novel compounds with increased cytotoxicity, and combination therapies with checkpoint inhibitors [8,9,10]. We tested a recently developed, novel HER2-targeting ADC composed of trastuzumab conjugated to a derivate of the highly potent anthracycline PNU-159682 through a non-cleavable peptide linker by sortase-mediated antibody conjugation (SMAC) technology [11, 12], hereafter called T-PNU. The SMAC technology allows for homogenous and stable ADC preparations with defined and favorable drug-to-antibody ratios and high in vitro and in vivo potency [11, 12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.