Abstract
A novel ant-based clustering algorithm integrated with the kernel (ACK) method is proposed. There are two aspects to the integration. First, kernel principal component analysis (KPCA) is applied to modify the random projection of objects when the algorithm is run initially. This projection can create rough clusters and improve the algorithm’s efficiency. Second, ant-based clustering is performed in the feature space rather than in the input space. The distance between the objects in the feature space, which is calculated by the kernel function of the object vectors in the input space, is applied as a similarity measure. The algorithm uses an ant movement model in which each object is viewed as an ant. The ant determines its movement according to the fitness of its local neighbourhood. The proposed algorithm incorporates the merits of kernel-based clustering into ant-based clustering. Comparisons with other classic algorithms using several synthetic and real datasets demonstrate that ACK method exhibits high performance in terms of efficiency and clustering quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.