Abstract

An ant colony algorithm-based approach to assembly sequence generation and optimization of mechanical products is presented in this article. For diverse assemblies, the approach generates different amount of ants cooperating to find optimal solutions with the least reorientations during assembly processes. Based on assembly by disassembly philosophy, a candidate list composed by feasible and reasonable disassembly operations that are derived from disassembly matrix guides sequences construction in the solution space expressed implicitly, and so guarantees the geometric feasibility of sequences. The state-transition rule and local- and global-updating rules are defined to ensure acquiring of the optimal solutions. Cases are given to show the effectiveness of the proposed approach, and the characteristics of the algorithm are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.