Abstract

A colorimetric and fluorescent chemosensor (chemosensor 2) for the detection of cyanide anions in aqueous solution has been designed and synthesized in high yield. The sensing mechanism of the chemosensor was verified via UV–vis, fluorimetric, and NMR titrations, and was theoretically explained using DFT and TD-DFT calculations. The chemosensor could optically discriminate the presence of fluoride ions over other anions by a color change from yellow to red with an enhancement of pink fluorescence in DMSO. However, it showed strong green fluorescence when CN− was added to a mixture of DMSO/water (6:4 v/v). Thus, the chemosensor can be employed in selective detecting of CN− besides other interference anions (F−, AcO− and H2PO4−) in aqueous solution. Moreover, 2 can be used to detect CN− at a concentration as low as 0.32 μM, which is lower than the WHO guideline (2.7 μM) for cyanide. A low quantity of CN− (1.08 μM) can be detected and quantified using the prepared chemosensor. Moreover, the UV–vis and fluorescence spectroscopy studies of the interactions between 2 and dublex DNA revealed intercalative binding of calf thymus DNA to the chemosensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.