Abstract

By the advent of the Smart Grid and integration of distributed generators, electrical networks are facing uncountable challenges. The existing protection schemes that simply limit the fault current to the predetermined set values may not perform optimally, and even the existing protection coordination schemes fail and lead to catastrophic failures in the increasingly complex and unpredictable grid operation. This paper proposes a novel and smart design of fault current controller constituting a full-bridge thyristor rectifier embedding a superconducting coil. When a fault occurs and the resulting current through the superconducting coil exceeds a certain preset value based on the current operating conditions of the grid to maintain the grid integrity, the magnitude of the fault current is regulated to a desired value by automatic controlling of the thyristor. This research also implements a lab-scale Smart FCC with smart current control capability and demonstrates the desired functionality and efficacy of design by changing the fault conditions. This proposed Smart FCC design will make the Smart Power Grid capable of self-healing against current faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.