Abstract
Soluble peptide/major histocompatibility complex (p/MHC) tetramers that directly bind to T cell receptors (TCRs) allow the direct quantification, phenotypic characterization and isolation of antigen-specific T cells. Conventionally, soluble p/MHC tetramers have been produced using Escherichia coli, but this method requires refolding of the recombinant proteins. Here, a novel and technically simple method that does not require protein refolding in vitro has been developed for the high-throughput generation of soluble and functional p/MHC-single chain trimer (SCT) monomers and tetramers in a mammalian cell system. The p/MHC-SCT tetramers generated by this method bound to the corresponding antigen-specific TCRs. Moreover, the immobilized p/MHC-SCT monomers effectively activated antigen-specific T cell lines as well as primary T cells in an antigen-specific manner. This technique provides a robust improvement in the technology, such that recombinant soluble p/MHC monomers and tetramers can be produced more readily and which enables their use in analysis of antigen-specific T cells in basic and clinical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.