Abstract

Abstract We present investigation of Petermann I and II spot sizes in the presence of Kerr nonlinearity. Our study is based on the simple power series formulation for fundamental modal field of single-mode-graded index fiber developed by Chebyshev formalism. Based on the said power series expression in the absence of nonlinearity, analytical expressions of the said spot sizes can be prescribed. Using the analytical expressions of the said spot sizes in the absence of nonlinearity, we apply iterative technique in order to predict the said propagation characteristics in presence of Kerr nonlinearity. In this context, we choose some typical single-mode step and parabolic index fibers. We show that the our results agree excellently with the exact results which can be obtained by using rigorous finite-element technique. This leads to verification of accuracy of our simple technique. Moreover, evaluation of the concerned parameters by our formalism involves little computation. Thus, our method provides an accurate but simple alternative to the existing rigorous methods in this context. Accordingly, this novel and simple formalism will prove user friendly to the system engineers in the field non linear optics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.