Abstract

Water pollution caused by heavy metals is a major environmental problem, threatening water production, food safety, and human health. Cadmium (Cd) pollution is particularly serious because of food-chain biomagnification at toxic concentrations. Modified biochar is promising for heavy metal removal; however, efficient adsorbents for Cd removal are lacking. In the present study, a novel adsorbent, silica gel-modified biochar (SGB), was prepared and applied to treat sewage polluted by Cd. Through the batch adsorption experiments, it is known that SGB possessed outstanding Cd removal ability and recycleability. Furthermore, the adsorption behavior and mechanisms were analyzed by the application of kinetic and isotherm models. The maximum Cd2+ adsorption capacity of SGB was 38.08 mg g−1, and after five recycling processes, the Cd2+ removal rate was still 86.89 %. When the pH of the solution was 7.0, SGB showed the strongest Cd2+ adsorption capacity (29.06 mg g−1). When competitive ions existed, biochar also had high Cd removal efficiency, although the effect of Pb2+ was greater than those of Cu2+ and Zn2+, indicating that SGB was applicable to complex polluted water. Additionally, the main Cd2+ adsorption mechanisms by SGB were electrostatic interactions, π-π interactions, complexation, and co-precipitation. These results showed that SGB can effectively treat Cd-contaminated wastewater as a new adsorbent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.