Abstract

In this study, a new “AND” logic platform based on intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET) is developed for constructing a near-infrared dual-locked fluorescence probe with high resistance to pH in biological environments. Using esterase and glutathione (GSH) as representative activators, the developed dual-locked probe BBQ650-SS-ClHC-E discriminates cancer cells from normal cells. The esterase substrate in the probe blocks the ICT process, while the GSH substrate acts as a linker to connect the fluorescence part with the quencher part to induce the FRET process. The fluorescence activation at 732 nm operates as an “AND” logic that depends on the “ICT-on” and “FRET-off” states in the presence of both esterase and GSH. BBQ650-SS-ClHC-E can successfully discriminate HeLa, 4T1, and RAW264.7 cancer cells from HFL1 normal cells and 4T1 tumor-bearing cells in living mice. This new platform can be used to develop dual-locked fluorescence probes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.