Abstract

Copper nanostructures have attracted more and more attention due to low preparation cost, similar thermal conductivity and optical characteristics to silver nanostructures. A novel macroscopic dendritic copper nanonoodles with the length of 3–50 mm prepared by solid-state ionics method at 10 μA direct current electric field (DCEF) using fast ionic conductor RbCu4Cl3I2 films was reported. The surface-enhanced Raman scattering (SERS) performance of prepared copper nanonoodles was detected by crystal violet (CV) and rhodamine B (RB) aqueous solution as analyte molecules. The results present that the copper nanonoodles assembled by short-range order copper nanowires and the diameters of nanowires changed from 20 nm to 80 nm, many regularly arranged nanoparticles with the diameter from 5 to 10 nm existed on the prepared copper nanonoodles, which lead to the nanonoodles have high surface roughness. The copper nanonoodles contain only Cu element, no O element and the fractal dimension of copper nanonoodles is 1.355 because of macroscopic dendritic structures. The prepared copper nanonoodles composed of pure Cu have high surface roughness and the free electrons on the rough copper nanonoodles resonate with the atomic nuclei inside the copper nanonoodles to form a locally enhanced electromagnetic field under the excitation of incident light, so the limiting concentrations for CV and RB detected by the prepared copper nanonoodles are as low as 1 × 10−11 mol/L and 1 × 10−12 mol/L, respectively. The centimeter-scale copper nanonoodles with low limiting concentration of analyte molecules can be used to detect harmful food additives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call