Abstract

Herein, we report the synthesis and characterization of chrysoidine (4-phenylazo-m-phenylenediamine) grafted on magnetic nanoparticles (Fe3O4@SiO2@CPTMS@PhAzPhDA=FeSiPAPDA) as a novel and versatile adsorbent used for the satisfactory removal of Pb, Ni, and Cd ions from contaminated water via the formation of their complexes. The Freundlich, Langmuir, Temkin, and Redlich-Patterson isotherm models were studied to reveal the adsorption capability of the adsorbent and were found out that the Langmuir model is more compatible with the nano-adsorbent behavior. Moreover, according to the ICP tests as well as based on the Langmuir isotherm, the maximum adsorption capacity of the FeSiPAPDA-based adsorbent for the Pb ions (97.58) is more than that of Cd (78.59) and Ni ions (64.03).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call