Abstract

Most SAR ship detectors based on convolutional neural networks (CNNs) needed preset anchor boxes to object classification and bounding box coordinate regression. However, the sparsity and unbalanced distribution of ships in SAR images mean that most anchor boxes are redundant. Thus, the anchor settings directly affect the performance and generalization ability of the detector. In addition, a variety in ship scales and the substantial interference of inshore backgrounds bring significant challenges to the SAR ship detector’s performance improvement. In this letter, a novel anchor-free based detector, named FBUA-Net, is proposed. We adopt a keypoint-based strategy to predict bounding boxes to eliminate the influence of anchors. Besides, we propose a global context-guided feature balanced pyramid (GC-FBP), which balances the semantic information at different levels of the feature pyramid by aggregation and averaging and uses the global context module (GCM) to learn global contextual information to construct long-range dependencies between ship targets and the background. Considering the interference of scattering noise to the detector, a united attention module (UAM) is designed to reduce the interference of surrounding noise by focusing on the spatial shape and scale size of ship targets in both the spatial and scale domains. Experimental results on the SSDD and HRSID datasets show that our detector achieves state-of-the-art (SOTA) performance. The source code can be found at https://github.com/so-bright/FBUA-Net.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.