Abstract

Abstract An offset representative unit cell (ORUC) is introduced to predict elastic properties of three-dimensional (3D) eight-harness satin weave composites both analytically and numerically. A curved beam model is presented based on minimum complementary energy principle, which establishes an analytical solution for elastic modulus and Poisson’s ratio calculation. Finite element method is developed to predict engineering constants of composites. Modified periodic boundary conditions and load method for ORUC are also presented. Experiments of simulated material are performed under tensile test. Close correlation is obtained between experimental data and predictions. Sensitivity study is conducted and manifests that within a large variation of constitutive material properties, the curved beam model derives close predictions comparing to finite element model, which indicates the stability of the curved beam model. Parametric study is also conducted to discuss the effect of weave type and geometric dimensions on elastic properties. It is argued that the curved beam model could manifest fine predictions accurately and stably, and is recommended for the prediction of elastic properties of satin weave composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.