Abstract

A novel and simple biosensor for the determination of bisphenol A (BPA) based on xanthine oxidase (XOD) enzymatic inhibition has been developed. The biosensor was prepared from xanthine oxidase immobilised by crosslinking with glutaraldehyde, with hypoxanthine as enzyme substrate, and was successfully applied to the determination of BPA using fixed potential amperometry. Biosensor performance was optimised with respect to the applied potential, influence of pH of the electrolyte solution, XOD loading and the substrate concentration. The enzyme inhibition mechanism was evaluated from Cornish-Bowden plus Dixon plots and was found to be reversible and competitive with an apparent inhibition constant of 8.15 nM. Under optimised conditions, the determination of BPA can be achieved in the linear range up to 41 nM with a detection limit of 1.0 nM, which is equal to the lowest reported in the literature, with very good repeatability and reproducibility. The selectivity of the biosensor was evaluated by performing an interference study and found to be excellent; and stability was investigated. It was successfully applied to the detection of BPA in mineral water and in river water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.