Abstract
We identified a novel heterozygous variant, Bβp.Pro234Leu (fibrinogen Tokorozawa), which was suspected to be associated with hypofibrinogenemia. Therefore, we analyzed the assembly and secretion of this fibrinogen using Chinese hamster ovary (CHO) cells. To determine the impact on the synthesis and secretion of fibrinogen of the Bβp.P234L and γp.G242E substitutions, we established recombinant variant fibrinogen-producing CHO cell lines. Synthesis and secretion analyses were performed using an enzyme-linked immunosorbent assay (ELISA) and immunoblotting analysis with the established cell lines. In addition, we performed fibrin polymerization using purified plasma fibrinogen and in-silico analysis. Both Bβp.P234L and γp.G242E impaired the secretion and synthesis of fibrinogen. Moreover, immunoblotting analysis elucidated the mobility migration of the Bβγ complex in Bβp.P234L. On the other hand, the fibrin polymerization of fibrinogen Tokorozawa was similar to that of normal fibrinogen. In-silico analysis revealed that the Bβp.P234 residue is located in the contact region between the Bβ and γ chains and contacts γp.G242 residue. The present study demonstrated that the Bβp.P234L substitution resulted in hypofibrinogenemia by decreasing the assembly and secretion of fibrinogen. Therefore, there is a possibility that substitutions in the contact region between the Bβ and γ chains impact the assembly and secretion of fibrinogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.