Abstract

In this paper, we develop an efficient spectral Galerkin method for the three-dimensional (3D) multi-term time-space fractional diffusion equation. Based on the L2-1σ formula for time stepping and the Legendre-Galerkin spectral method for space discretization, a fully discrete numerical scheme is constructed and the stability and convergence analyses are rigorously established. The results show that the fully discrete scheme is unconditionally stable and has second-order accuracy in time and optimal error estimation in space. In addition, we give the detailed implementation and apply the alternating-direction implicit (ADI) method to reduce the computational complexity. Furthermore, numerical experiments are presented to confirm the theoretical claims. As an application of the proposed method, the fractional Bloch-Torrey model is also solved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.