Abstract

4-Amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative, was reported to function as a tumor inhibitor in various types of cancer cells invitro. However, little is known concerning its antitumor effect on human hepatocellular carcinoma (HCC) HepG2 cells. The aims of the present study were to investigate the effects of ATPR on the proliferation of HepG2 cells and to explore the probable mechanisms. A series of experiments were performed following the treatment of HepG2 cells with ATRA and ATPR. MTT and plate colony formation assays were used to measure the cell viability. To confirm the influence on proliferation, flow cytometry was used to detect the distribution of the cell cycle. Apoptosis was observed by Hoechst staining and flow cytometry. In addition, to characterize the underlying molecular mechanisms, immunofluorescence was applied to observe the distribution of p53. The transcription and translation levels of p53 were analyzed by real-time quantitative RT-PCR (qRT-PCR) and western blotting. The expression levels of murine double minute2 (MDM2), apoptosis stimulating proteins of p53 (ASPP), cell cycle-and apoptosis-associated proteins were detected by western blotting. After HepG2 cells were incubated with ATRA and ATPR, the viability of the HepG2 cells was inhibited in a dose-and time-dependent manner. As well, ATPR significantly suppressed HepG2 cell colony formation and arrested cells at the G0/G1phase, while ATRA had no obvious effects. Both Hoechst staining and flow cytometry unveiled the apoptosis of HepG2 cells. Moreover, the fluorescent density of p53 was higher in the nuclei after exposure to ATPR than that in the ATRA group. HepG2 cells treated with ATPR showed elevated mRNA and protein levels of p53 when compared with these levels in the ATRA-treated cells. Western blotting showed that ATPR increased ASPP1, p21 and Bax expression and decreased MDM2, iASPP, cyclinDandE, cyclin-dependent kinase6 (CDK6) and Bcl-2 expression, while CDK4 and ASPP2 expression were scarcely altered. Consequently, ATPR exerted a better inhibitory effect on the proliferation of HepG2 cells than ATRA through increased expression of p53 and ASPP1 and downregulation of iASPP, thereby resulting in G0/G1cell cycle arrest and apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.