Abstract

Summary This article reports a laboratory study of a novel alkaline/surfactant/foam (ASF) process. The goal of the study was to investigate whether foaming a specially designed alkaline/surfactant (AS) formulation could meet the two key requirements for a good enhanced oil recovery (EOR) [i.e., lowering the interfacial tension (IFT) considerably and ensuring a good mobility control]. The study included phase-behavior tests, foam-column tests, and computed-tomography (CT)-scan-aided corefloods. It was found that the IFT of the designed AS and a selected crude oil drops by four orders of magnitude at the optimum salinity. The AS proved to be a good foaming agent in the column tests and corefloods in the absence of oil. The mobility reduction caused by the AS foam was hardly sensitive to salinity and increased with decreasing foam quality. CT-scanned corefloods demonstrated that AS foam, after a small AS preflush, recovered almost all the oil left after waterflooding. The oil-recovery mechanism by ASF combines the formation of an oil bank and the transport of emulsified oil by flowing lamellae. Further optimization of the ASF is needed to ensure that the oil is produced exclusively by the oil bank.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call