Abstract

This paper proposes a simple and effective method for estimating the feedback level factor C in a self-mixing interferometric sensor. It is used with a Kalman filter to retrieve the displacement. Without the complicated and onerous calculation process of the general C estimation method, a final equation is obtained. Thus, the estimation of C only involves a few simple calculations. It successfully retrieves the sinusoidal and aleatory displacement by means of simulated self-mixing signals in both weak and moderate feedback regimes. To deal with the errors resulting from noise and estimate bias of C and to further improve the retrieval precision, a Kalman filter is employed following the general phase unwrapping method. The simulation and experiment results show that the retrieved displacement using the C obtained with the proposed method is comparable to the joint estimation of C and α. Besides, the Kalman filter can significantly decrease measurement errors, especially the error caused by incorrectly locating the peak and valley positions of the signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call