Abstract

ObjectivesMicrosatellite instability (MSI) is the condition of genetic hypermutability caused by spontaneous acquisition or loss of nucleotides during the DNA replication. MSI has been discovered to be a useful immunotherapy biomarker clinically. The main DNA-based method for MSI detection is polymerase chain reaction (PCR) amplification and fragment length analysis, which are costly and laborious. Thus, we developed a novel method to detect MSI based on next-generation sequencing (NGS) data.MethodsWe chose six markers of MSI. After alignment and reads counting, a histogram was plotted showing the counts of different lengths for each marker. We then designed an algorithm to discover peaks in the generated histograms so that the peak numbers discovered in NGS data resembled that in PCR-based method.ResultsWe selected nine samples as the training dataset, 101 samples for validation, and 68 samples as the test dataset from Chifeng Municipal Hospital, Inner Mongolia, China. The NGS-based method achieved 100% accuracy for the validation dataset and 98.53% accuracy for the test dataset, in which only one false positive was detected.ConclusionsAccurate MSI judgments were achieved using NGS data, which could provide comparable MSI detection with the gold standard, PCR-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.