Abstract
Data mining has achieved great success in air traffic management as a technology for learning knowledge from historical data that benefits people. However, data mining can rarely be embedded into the trajectory optimization process since regular optimization algorithms cannot utilize the functional and implicit knowledge extracted from historical data in a general paradigm. To tackle this issue, this research proposes a novel data mining-based trajectory generation method that is compatible with existing optimization algorithms. Firstly, the proposed method generates trajectories by combining various maneuvers learned from operation data instead of reconstructing trajectories with generative models. In such a manner, data mining-based trajectory optimization can be achieved by solving a combinatorial optimization problem. Secondly, the proposed method introduces a majorization–minimization-based adversarial training paradigm to train the generation model with more general loss functions, including non-differentiable flight performance constraints. A case study on Guangzhou Baiyun International Airport was conducted to validate the proposed method. The results illustrate that the trajectory generation model can generate trajectories with high fidelity, diversity, and flyability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.