Abstract

Hydrogen peroxide (H2O2), a key reactive oxygen species (ROS), plays crucial roles in redox signaling pathways and immune responses associated with cell proliferation, differentiation, migration, and disease progression. The selective monitoring of overproduced H2O2 is important for understanding the diagnosis and pathogenesis of diseases such as cardiovascular disease, cancers, diabetes, Parkinson’s disease, Alzheimer’s disease, and inflammation. In this paper, an AIE fluorescent probe BQM-H2O2 was developed by connecting phenyl borate with the fluorophore BQM-PNH for selective detection of H2O2. In the presence of H2O2 at fw = 99% (pH = 7.4, 1% DMSO), the probe BQM-H2O2 could generate strong fluorescent signals due to the oxidation of the borate ester. The probe exhibited high selectivity and a low detection limit toward H2O2 with the calculated LOD of 112.6 nM. Importantly, it was employed in the detection of exogenous and endogenous hydrogen peroxide in 4T1 cells with low cytotoxicity. This probe has also been successfully applied to imaging of H2O2 in Blab/c mice bearing 4T1 graft tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call