Abstract
A donor-acceptor Schiff-base fluorescent probe BKS with chelation enhanced fluorescence (CHEF) mechanism was designed and synthesized via benzophenone(Acceptor), salicylaldehyde and carbazole(Donor) for Al3+ detection, which exhibited typical aggregation-induced emission (AIE) characteristic. BKS probe could provide outstanding selectivity to Al3+ with a prominent fluorescence "turn-on" at 545nm in a wide pH range from 2 to 11. By the Job's plot, the binding stoichiometry ratio of probe BKS to Al3+ was determined 1:1. The proposed strategy offered a very low limit of detection at 1.486 µM in THF/H2O(V/V = 1:4, HEPBS = 10 mM, pH = 7.40),which was significantly lower than the standard of WHO (Huang et al., Microchem J 151:104195, 2019)-(Yongjie Ding et al., Spectrochim Acta Mol Biomol Spectrosc 167:59-65, 2021) guidelines for drinking water. BKS probe could provide a wider linear detection range of 50 to 500 µM. Furthermore, the probe could hardly be interfered by other examined metal ions. The analysis of Al3+ in real water samples with appropriate recovery (100.72 to 102.85) with a relative standard deviation less than 2.82% indicated the accuracy and precision of BKS probe and the great potential in the environmental monitoring of Al3+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.