Abstract

The ability of predicting future frames in video sequences, known as video prediction, is an appealing yet challenging task in computer vision. This task requires an in-depth representation of video sequences and a deep understanding of real-word causal rules. Existing approaches often result in blur predictions and lack the ability of action control. To tackle these problems, we propose a framework, called VPGAN, which employs an adversarial inference model and a cycle-consistency loss function to empower the framework to obtain more accurate predictions. In addition, we incorporate a conformal mapping network structure into VPGAN to enable action control for generating desirable future frames. In this way, VPGAN is able to produce fake videos of an object moving along a specific direction. Experimental results show that a combination of VPGAN with some pre-trained image segmentation models outperforms existing stochastic video prediction methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.