Abstract

A novel adsorption-based method for quantitative estimation of the phosphorus atom replacement for a (Si, H+) pair in the SAPO-11 framework is suggested. The most probable configurations and regularities in the location of silicon atoms and protons in the SAPO-11 structure containing 1, 2, 3 and 5 Si atoms per unit cell were determined by computations. A new force field for adsorption simulation in the H2 – SAPO system was developed. The dependence of averaged Henry's constants for H2 adsorption at 77 K on the amount of substituted Si was calculated. The effect of model used for computation of the Si distribution probability in the SAPO-11 on the adsorption properties in the H2 – SAPO system was studied. Practical applications of the method for several SAPO-11 frameworks with different Si concentrations are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.