Abstract
Stochastic resonance, known for its strong capability to amplify weak signals, has been widely applied in rotating machinery fault diagnosis. However, the increasing intelligence of mechanical equipment and the harsh service environment leads to new challenges for stochastic resonance method. Moreover, the adaptive stochastic resonance system relying on the signal-to-noise ratio (SNR) as the loss function requires extensive prior knowledge of the signal to be measured, limiting its application in engineering. Therefore, this paper presents a modulation periodic stochastic pooling networks (MPSPN) with integral modulation factor. By using the normalized least-mean-square (NLMS)algorithm, an adaptive bearing fault diagnosis method based on MPSPN under unknown faults is developed. The study first proposes a modulated periodic stochastic resonance (MPSR) model and investigates its stochastic resonance characteristics through the steady-state probability density. Then, it introduces a modulation signal detection index (IMBF) and derives an adaptive weight allocation scheme under NLMS optimization. Finally, the superiority of the MPSPN system is demonstrated through simulations and the analysis of bearing fault data obtained from two distinct experimental platforms. The results indicate that, in comparison to the conventional periodic stochastic resonance (PSR) system, the MPSPN system is capable of effectively diagnosing unknown faults in bearings and significantly improving the SNR of the diagnostic output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.