Abstract

The design of efficient isolated low output voltage converters is a major concern due to their widespread use. One of the preferred methods used to maximize their efficiency is synchronous rectification (SR), i.e., the replacement of the secondary side diodes with MOSFETs to decrease conduction losses. However, depending on the topology being used, SR might not provide the required efficiency improvement or even be easily implemented. This paper presents a novel SR system that can be applied to converters with symmetrically driven transformers and to converters from the flyback family; in both cases, the proposed system adaptively generates a control signal that controls a synchronous rectifier MOSFET placed in parallel with each diode, turning it on during the conduction intervals of the diodes. The proposed system uses only information from the secondary side, thus avoiding breaking the isolation barrier; it can be built using a few low-cost analog components, is reliable and simple, and could be easily implemented in an integrated circuit. Up to a 3% improvement is demonstrated in a 3.3–5-V 120-W push–pull converter, and up to a 2.5% improvement is obtained in a 5-V 50-W flyback converter, with both of them designed for telecom applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.