Abstract

AbstractIdentification of feasible region of operations in multivariate processes is a problem of interest in several fields. This is particularly challenging when the process model is black‐box in nature and/or is computationally expensive, as analytical solutions are not available and the number of possible model evaluations is limited. An efficient methodology is required to identify samples where the model is evaluated for developing a computationally efficient surrogate model. In this work, an artificial neural network based surrogate model is proposed which is integrated with a statistical‐based approach (Jack‐knifing) to estimate the variance of the surrogate model prediction. This allows implementation of an adaptive sampling approach where new samples are identified close to the feasible region boundary or in regions of high prediction uncertainty. The proposed approach performs better than a previously published kriging based method for different dimensionality case studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.