Abstract

This paper presents the application of a complex adaptive linear neural network (CADALINE) in tracking the fundamental power system frequency. In this method, by using Park transformation in addition to producing a complex input measurement, the decaying DC offset is eliminated. As the proposed method uses first-order differentiator to estimate frequency changes, a Hamming filter is used to smoothen the response and cancel high-frequency noises. The most distinguishing features of the proposed method are the reduction in the size of observation state vector required by a simple adaptive linear neural network (ADALINE) and increase in the accuracy and convergence speed under transient conditions. This paper concludes with the presentation of the representative results obtained in numerical simulations and simulation in PSCAD/EMTDC software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.