Abstract
Extended Kalman filter (EKF) has been used as a popular choice to solve simultaneous localization and mapping (SLAM) problem. However, SLAM algorithm based on EKF-SLAM has two serious drawbacks, namely the linear approximation of nonlinear functions and the calculation of Jacobin matrices. For solving these problems, SLAM algorithm based on unscented Kalman filter (UKF-SLAM) has been recently proposed. However, the performance of the UKF-SLAM and thus the quality of the estimation depends on the correct a priori knowledge of process and measurement noise covariance matrices respectively denoted by Qk and Rk. Imprecise knowledge of these statistics can cause significant degradation in performance. This article proposes the development of an adaptive neuro-fuzzy UKF (ANFUKF) for SLAM. The Adaptive neuro-fuzzy attempts to estimate the elements of Rk matrix in the UKF-SLAM algorithm at each sampling instant when measurement updating step is carried out. The adaptive neuro-fuzzy inference system (ANFIS) supervises the performance of the UKF-SLAM with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences. The free parameters of ANFIS are trained using the steepest gradient descent (GD) to minimize the differences of the actual value of the covariance of the residual with its theoretical value as much as possible. The simulation results show the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.