Abstract
Multi-objective long-term generation scheduling (MLGS) considering ecological flow demands is important for comprehensive utilization of water resources in cascade hydropower system (CHS). A novel adaptive multi-objective particle swarm optimization based on decomposition and dominance (D2AMOPSO) is developed in this paper to solve the MLGS problem. In D2AMOPSO, a constraint handling method based on repair strategy and individualconstraints and group constraints (ICGC) technique is embedded to address various constraints. An improved logistic map is adopted to initialize the population. During the evolutionary process, an improved Tchebycheff decomposition is introduced to select personal best and global best for each particle, and the non-dominated solutions found so far are stored in an external archive where crowding distance and elitist learning strategy are performed to improve its diversity. Meanwhile, an adaptive flight parameter adjustment mechanism based on Pareto entropy is adopted to balance the global exploration and local exploitation abilities of the population. A normal cloud mutation operator is used to keep the population diversity and escape local minima. In the case study of the Three Gorges Cascade hydropower system (TGC) under three typical years, the results of the proposed method and other four competitors show that D2AMOPSO can obtain better diversity and faster convergence solutions for the MLGS problem in less time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.